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ON CERTAIN CONTACT PROBLEMS FOR REINFORCED PLATES* 

O.V. ONISHCHUK, G.YA. POPOV and yV.S. PROTSEROV 

Problems of the smooth contact with the linearly deformable base of an 
infinite plate reinforced byanthinelaSticrib/Stiffener/(offiniteorsemi- 
infinite length) are examined. The rib is subjected to a 
normal load while its ends are free. The bending moments in the reinforc- 
ing ribs are computed. Analogous problems are ecamined in /l/ for re- 
inforcement by infinite ribs. The characteristic feature of the 
investigation is the reliance on solutions with non-integrable singular- 
ities for the integral equations of the contact problems mentioned, and 
the utilization of integrals in a regularized (generalized) sense /2/. 
The beginning of similar investigations is found in /3--5/. 

1 _. Consider the problem of the bending of an infinite plate -00 <z, y.:oo, lying with- 
out friction on a linearly deformable base /6/. The plate is reinforced along the line 
E = 0, 1 y 1 <a by a thin elastic rib to which a load q(Y), directed perpendicularly to the 
(z,Y) plane, is applied. It is required to find the bending moment in the rib and thecontact 

interaction forces between the rib and the plate. 
The presence of the reinforcing rib causes a jump in the generalized transverse force V, 

in the plate. Using the notation <f> =f (-0, y)- f(+O, y), we have 

<w> = <%'> = <M,> = 0, (V,> = cp (Yj (1.1) 

Here cp(Y)is the unknown contact 

m(Y)=0 for IYI>a. 
Considering the ends of the rib 

problem for the rib deflection u(y): 

E*l*v(‘) (Y) =g (Y) 

whereE,is the modulus of elasticity 

interaction force between the rib and the plate, where 

to be free, we arrive at the following boundary value 

- rp (!/)(I y I < a), VW (ztu) = u” (*a) = 0 (1.2) 

of the rib material, and I,is the rib moment of inertia. 
Let p(z,y) be the contact force between the plate and the base. Then the plate deflec- 

tion z~(z,Y) should satisfy the differential equation 

DAC = -p (z, y), D = Eh3 L12 (1 - v*)l-1 (1.3) 

for all zE(--oo,w), YE(--oo,oo), except z = 0, ly l<a(D is the plate stiffness, h is its 
thickness, E is the modulus of elasticity , and v is Poisson's ratio). 

The vertical displacement of the surface points of the base w,,(z, y)can be fonnd from 
the formula 

where K(z, Y) is the kernel of the linearly deformable base /6/ for which the following 
representation holds 

K (2, y) = & fi H (u, B) e-i (==+m da dB 

With respect to the density of the base kernel H (a,#) we assume that it has the asymp- 
totic form 

H (a, /3) = 0 (a”$-I), 1 a 1 + 00, 0 < el < 1 (1.5) 
H (a, B) = 0 (Be*'), I B I* 00, 0 6 s, < 1 

which is satisfied for the majority of known bases. In particular, for an elastic isotropic 
half-space H(a, p) = 8 (a2 + fi2)-'/*, 8 = 2 (1 -v$) &-', where E, and v0 are the modulus of elast- 
icity and Poisson's ratio of the half-space material. 

We will reduce problem (1.2)-(1.4) to an integral equation in rp (y). To do this, taking 
(1.1) into account we apply a Fourier transformation in x by the scheme of the generalized 
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method /5/ and a Fourier transformation in y to (1.3 and (1.4). 
bilateral, i.e., w&y)= wo(s,y), by eliminating the transform 
and inverting the Fourier transforms, we obtain 

Assuming the contact 
of the contact forces 

We find the rib deflection from the formula 

to be 

P h-9 YJ 

!L.6) 

(1.7) 

where V,, VI are constants determined later, and G(Y, E) is the generalized Green's function 
/7/ of the boundary value problem (1.2) which has the following form for the interval (-a, a): 

G(Y+=-&IY-~I~- &(Y’+&“)~&-&(Y~+E”) -+ 

+ (Y” -I- 57 YF, --$-(Y*+P) -I- %YE +f 

Formula (1.7) holds under the following conditions on the right side of the differential 
equation from (1.2) 

S [g(Y)--cp(Y)ldY=O, i [a(Y)--q,(Y)lYdY=O (1.8) 
-(I -s 

which is satisfied because of the selfequilibration of the load applied to the rib with free 
ends. 

By realizing the condition of rib and plate contact u(Y)= UJ (0, y) and taking account 
of (1.6) and (1.7), we obtain an integral equation in m(y) 

Let us clarify the form of the singularities of the desired function cp(f) at the points 
5 = fa for which we extract the principal part in the kernel t(y,@. The differential 

properties of the function R(O,z) in the neighbourhood of the point z = 0 are determined by 

the behaviour of the functions y((a,p) as a-w and p-m. Taking account of (1.5) and 
(1.6), we obtain 'Pfa, @) = 0 ((a* + fF)*). Using the integral 

(y is Euler's constant) which is obtained by using the appropriate formulas from /8, g p.i04/, 
we arrive at the conclusion that 

I(Y,E)=~fY-f)~tnlY-~l+flo(Y.5) 

where I,(Y,E) is a smoother function than the first term. 
Equation (1.9) obtained is an integral equation of the first kind with a continuous kernel.. 

Following 14, 51, we seek its solution in the class of functions with non-integrable Singular- 

ities at the ends of the interval 

Q, (5) = (a2 - P)-%o (E) (i.lO), 

(q,,(E) satisfies the HGlder condition), and the corresponding integrals are understood in the 

regularized sense /2/. 
Note that utilization of the regularization of divergent integrals enables one, In 

principle, to solve (L.9), and in the broader classes of funCtiOnS 

e (E) = (a - &*'(a 3_ EP p0 (5) (Re W,G -23 Re Y c -3 1: 1;) _. 
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but, in these classes (1.9) has infinitely many solutions. In particular, the homogeneous 
characteristic equation 

i (Y--)*1nIY--EI’P(E)df=O 
-(I 

has infinitely many solutions Gf the form 

rpmn(S) = (a-f) +-"(n+~)-*'"~ (m = 0, i, 2,. “, n = u, 1, 2,. . ., m + R > il 
and only the trivial solution rpff)rsO in the class (1.101. 

It should be noted that for the formulation of the problem inquestionto be correct, the 
followinq fact is very important. The class of solutions (1.11) is characterized by the fact 
that the energy integral of a bent plate 

Eha ’ 

42(ltv) SSi( 
s 

diverges while the second derivatives of tufz,~) for selecting the contact forces in the class 
(1.10) behave as r% on approaching the points t=O,y== ftr, and the energy integral is con- 
vergent as an improper one I which enables the question of the uniqueness of the solution to be 
investigated by known methods. 

The approximate solution of (1.9) is obtained by the method of orthogonal, polynomials 
/S, 6/. We consider the case of an even external load p(y). 
to the interval (L-1,1) by using the substitution 

'Following /4, 5/ and going over 
y = at, 5 = ar we write the desired funct.ion 

in the form 

cp(ar)=*(~)= j$*j,(% x*(r)= (1 - ly/* (1.12) 

Xj (Z) = (1 - t*)+2 J.G (Zj)! [r (2j - ‘/*)]-” PG”’ a’r (T) (12 if 

Substituting (1.121 into (1.9) I multiplying by Z.W%i(t) (i = 0, 1,2, . ..) and integrating 
between -1 and 1 with respect to t, we arrive at the final system of linear algebraic equa- 
tions 

(i = 0, 1, 2, . . .) (1.13) 

Expressions for aij, bi are obtained by expanding the function G(y,& in the trigono- 
metric series 

An u?.known constant V,. equal to the deflectionoftheribsas 
on the right side of (1.13). 

a rigid whole, is present 

into (1.8). 
Consequently, WC find the coefficient I& by substituting !1.12) 

4 (y) and 
The second condition is automatically satisfied here because of the evenness of 

v(u); the former yields 
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Furthermore $l(i =S 1) are found from ( 1.13) 
System !1.13) 

for i 21, andV, from (1.13: for i = 0. 
is qLTaSiregular, and its apprOXiXl3ate Solution, can be 

of reduction /lo/. 
obtained by the method 

To prove the WaSiregularity of systsm (1.13), we examine ai, for i> i, ;&I. AcTordinG 
to (1.5) and (1.61, it is possible to ' write D@s (0) = "it I B I -3+ Co (p), where GO (fi) = 0 (iP+) as 
J3- CQ. Then 

I&.. 

The Kronecksr delta 611 is obtained from 6.538(2) in /8/, the second equality in (1.15) is 
obtained from the integral representation of the Bessel function, and the series (1.16) is 
summed in /B, p-158/. 
0-1% 

It follows from the asymptotic form of G,(& that [ni,.ll< M(2i - 1)-2(2, - 
where M is independent of iandj. Then (1.13) can be rewritten for i>,Z in the form 

Oi + 5 cij*j = fi 

j=0 

where the following estimate holds fox. ciI: 

,CijI<=$q “k’~~I’_Iy’ +(n_*)&;_*tr] 

and Oi = fcioIf [nil]+. . . <t starting with a certain i and fairly small c. Substituting (1.12) 
into (1.71, we obtain an expresion for the rib deflection in the form 

The expression for the bending moment is obtained in the same way as (6.1.58) in /5/ and 
when q(y) = P&(y) has the form 

The results of Calculations of the quantity 10J(Pa)-lM(at) are represented in Table 1 as 
a function of the quantity I= ab-I, theratio of the rib length to its breadth. An elastic 
half-space is taken as the foundation and the following relations are used for the elastic 
parameters of the plate, the rib, and the foundation:v=v,=V,, E/E, = I/*, EIE, = 10, hlH = x/s (H is 

the rib height). Extraction of the non-integrable singularities in the solution of the equa- 
tion assured rapid convergence of series (1.12), and retention of six terzns is sufficient tc 
obtain three significant figures. 

2. We consider the problem of the bending of an unbounde d plats, reinforced by a scmi- 

infinite rib I = 0, y> 0 whose end y = 0 is simply supported, on a linearly deform&le 
foundation. Equation (1.3) holds eve&ywhere except at the points x = 0,y > 0. and we have 
instead of (1.2) 

E*f,vc*) fy) = 4 (Yf - (p(y), Y" (0) = V"'(O) = 0 (".I) 

where the unknown functionrp(y)equals zero for y< 0. 
In place of (1.6) we have the foiLowing for the plate defiection: 
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(2.2) 

Taking account of the equation v(y) = LD (O,y), we substitute (2.2) for 5 = 0 into (2.1). 
We consequently arrive at a Wiener-Hopf type integro-differential equation in the function m(y) 

cP(Y)-i-b+S b(Y--t)cp(odt=q(Y) (0.SY< -1 
0 

11(z) = 2Jdl(O, z) = f CD’B (0) e-iez q, b=+ 
-ca 

The integro-differential equation (2.3) allows of exact solution by the method of factoriza- 
tion, but the corresponding formulas are inconvenient for numerical. realization. According 
to /6/, the known factorization formulas are here transformed to a form convenient for calcula- 
tions. 

Table 1 Table 2 

1 I 1 h-2 I 10 20 

495 
446 
404 
364 
326 
288 
256 
211 
169 
118 
0 

400 
354 

"2;: 
252 
223 
195 
166 
135 
96 
0 

2: 
224 
207 
189 
163 
123 
0 

23oet 
249 

$ 
244 
238 
214 
170 
0 

Y x - 1.5 2.0 
! 

2.5 

8::. 
8.Q 
0:s 
1.0 

Z 
3;o 

8:: 

310 

E 
349 
342 

z 

% 
281 
278 

The solution of (2.3) has the form 

‘pc (y) -& 5 [B (u) + i L*] L,+ (u) e-W du 
-0D 

where Ll*(u) is the solution of the factorization problem 

[ I+ bu4L1 (u)]-’ = L,+(u)L1-(u), L1(n)= [ ll(z)ei”dz 

121 
133 
131 
121 
108 

79: 

2 

19 

(2.4) 

(2.5) 

and B(u)is an integral 
for convergence of the 

function. It is ordinarily determined by starting from the conditions 
integral 

5 B(u)L1+(u)eiu~du (2.6) 
-m 

Since L1 (u) = 2n3,, (0), then L1+ (u) = 0 (u-Q), u + X, and the function B(u)should be a con- 
stant. But, on the other hand, satisfaction of the two conditions from (2.1) at the end of 
the rib y= 0 is required, whereupon it is necessary to have two arbitrary constants A,, Al, 
i.e, we should take 

(2.7) 

If integral (2.6) is understood here in the regularized senseof/2/, then on the basis of 
(2.4) and the well-known formula /9, p.l03/, we find that the solution q~(y)=O(y"/*) as y- 0. 
Therefore, as in the previous problem we arrive at a solution with non-integrable singularit- 
l@S. Utilization of the Fourier transformation of generalized functions /9/ even in this case 
enables us to take a polynomial of any power n as B(u), but for n> 2 the solution will not 
be unique, and the energy integral will be divergent. 

Transforminq (2.4) to a form convenient for calculations by the scheme mentioned in /6/, 
we obtain a solution of (2.3) in the form 
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12.5) 

Here B,and B1 are new arbitrary constants. We determine them from the rib equilibrium 
conditions which are. equivalent to the boundary conditions in (2.1) 

fbww~~=0. fezwP01dP0 
0 0 

If the external load is a concentrated force P applied to the rib at the point y = d: 

nfu) =B~(Y-& then 

If the force is applied to the point y=O, then cp,=o,(2.9) andyieldsthefollowing con- 
ditions for finding B,and BI: 

PI 

$c 4 (- 1)” g, = - bP, 

1 bD iz: Bj (-i)~g,(2m+j-+O 
j=u3 -0 

To determine the bending moment in the rib, we integrate the differential equation from 
(2.1) twice, finding the constants of integration by using the boundary conditions from (2.11. 
We consequently obtain 

of 

1. 

2. 

The results of calculations of the quanlity 103P-‘M,(y) are given in Table 2 as a function 
the quantity x= Hlh for the same elastic parameters as in the first problem. 
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A NON-STATIONARY DYNAMICAL PERIODIC CONTACT PROBLEM FOR A 
HOMOGENEOUS ELASTIC HALF-PLANE* 

V.M. FOMIN 

The problem of determining the contact stresses under a periodic system 
of stamps located on the boundary of a homogeneous elastic half-plane and 
moving under the effect of a load, identical for all stamps, that is 
arbitrary in time, is investigated. The problem reduces to solving a 
Fredholm integral equation of the first kind for the Laplace transform 
of the contact stresses. The stresses are sought in the form of a double 
expansion in Chebyshev polynomials of the linear coordinate and Laguerre 
polynomials of time. The coefficients of the expansions are determined 
recursively from an infinite quasiregular system of linear algebraic 
equations. 

Despite the fact that the static periodic contact problems of the 
theory of elasticity, on the one hand (/l-6/, say), and dynamic problems 
for a finite number if stamps on the other (see the survey in /17/), have 
been studied repeatedly by different investigators, so far as we know, the 
plane non-stationary dynamical periodic contact problem has still not 
been examined at all. 

1. A system of vertical unit impulses at the points 

x=ml(m=O,i_1,+2,...) p(x,l)= n,$,S(z-ml)W) (1.1) 

where (6 (t) is the delta function), is applied to the boundary of a homogeneous elastic half- 
plane. The OS axis is directed along the half-plane boundary. The variable x and the time 
t are assumed to be dimensionless; the length scale is a and the time scale is a/c,. Here a 
is a certain parameter with the dimensions of length, and c1 is the transverse velocity of 
wave propagation in an elastic half-space. 

Substituting (1.1) into (1.24) in /7/ and using the equation 

we obtain a function &(z,s) that is the Laplace transform of the vertical displacement of a 
boundary point of the half-plane with abscissa x due to the action of a weriodic svstem of 
concentrated unit impulses 

* -am---- -- 
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